Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 200(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29986942

RESUMO

Periodontal disease (PD) results from a shift in the composition of the microbial community of the subgingival crevice. As the bacterial population transitions from Gram-positive bacteria to predominantly Gram-negative anaerobes and spirochetes, dramatic changes occur in the physiological and immunological environment at diseased sites. Treponema denticola thrives in periodontal pockets, indicating that it has a unique ability to adapt to changing environmental conditions. Hpk2 (tde1970), a Per-Arnt-Sim motif (PAS) domain-containing histidine kinase (HK), is part of the T. denticola Hpk2-Rrp2 (tde1969) two-component regulatory (TCR) system. This TCR system is growth phase regulated and has been postulated to play a key role in adaptive responses. In this study, we employ predictive structural analyses and site-directed mutagenesis to investigate the functional role of specific amino acid residues located within the Hpk2 PAS domain. Specific substitutions impacted autophosphorylation (AP), phosphotransfer (PT), oligomerization, and hemin binding. The AP, PT, hemin binding, and oligomerization potential of some mutated Hpk2 proteins differed under aerobic versus anaerobic reaction conditions. The data presented here suggest that the regulatory activity of Hpk2 is linked to diatomic gas levels. In a broader sense, this study highlights the importance of studying proteins produced by anaerobes under conditions that approximate the environment in which they thrive.IMPORTANCE Periodontal disease affects nearly 60% of the global adult population. Its costs to individuals, and to society as a whole, are enormous. As periodontal disease develops, there is a shift in the composition of the oral microbial community. The bacteria that become dominant are able to cause significant damage to the tissues that support the teeth, leading to tooth loss. Treponema denticola is one of the keystone pathogens associated with periodontal disease. An earlier study demonstrated that the Hpk2 and Rrp2 proteins play an important role in adaptive responses. Here, we explore the role of specific Hpk2 amino acids in environmental sensing and function, using structural analyses and site-directed mutagenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Treponema denticola/enzimologia , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Histidina , Mutagênese Sítio-Dirigida , Doenças Periodontais/microbiologia , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína , Treponema denticola/genética
2.
Matrix Biol ; 52-54: 234-245, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26586472

RESUMO

Several diseases such as proximal and distal renal tubular acidosis and osteoporosis are related to intracellular pH dysregulation resulting from mutations in genes coding for ion channels, including proteins comprising the proton-pumping V-type ATPase. V-type ATPase is a multi-subunit protein complex expressed in enamel forming cells. V-type ATPase plays a key role in enamel development, specifically lysosomal acidification, yet our understanding of the relationship between the endocytotic activities and dental health and disease is limited. The objective of this study is to better understand the ameloblast-associated pH regulatory networks essential for amelogenesis. Quantitative RT-PCR was performed on tissues from secretory-stage and maturation-stage enamel organs to determine which of the V-type ATPase subunits are most highly upregulated during maturation-stage amelogenesis: a time when ameloblast endocytotic activity is highest. Western blot analyses, using specific antibodies to four of the V-type ATPase subunits (Atp6v0d2, Atp6v1b2, Atp6v1c1 and Atp6v1e1), were then applied to validate much of the qPCR data. Immunohistochemistry using these same four antibodies was also performed to identify the spatiotemporal expression profiles of individual V-type ATPase subunits. Our data show that cytoplasmic V-type ATPase is significantly upregulated in enamel organ cells during maturation-stage when compared to secretory-stage. These data likely relate to the higher endocytotic activities, and the greater need for lysosomal acidification, during maturation-stage amelogenesis. It is also apparent from our immunolocalization data, using antibodies against two of the V-type ATPase subunits (Atp6v1c1 and Atp6v1e1), that significant expression is seen at the apical membrane of maturation-stage ameloblasts. Others have also identified this V-type ATPase expression profile at the apical membrane of maturation ameloblasts. Collectively, these data better define the expression and role of the V-type ATPase proton pump in the enamel organ during amelogenesis.


Assuntos
Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Ameloblastos/metabolismo , Animais , Citoplasma/metabolismo , Órgão do Esmalte/metabolismo , Endossomos , Regulação da Expressão Gênica no Desenvolvimento , Lisossomos , Masculino , Ratos
3.
Front Physiol ; 5: 277, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120490

RESUMO

Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam, and Mmp20), while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4). Western blot analyses show that Amelx, Ambn, and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.

4.
PLoS One ; 9(2): e88361, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505483

RESUMO

The classic organization by Socransky and coworkers categorized the oral bacteria of the subgingival plaque into different complexes. Treponema denticola, Porphyromonas gingivalis and Tannerella forsythia are grouped into the red complex that is highly correlated with periodontal disease. Socransky's work closely associates red with orange complex species such as Fusobacterium nucleatum and Prevotella intermedia but not with members of the other complexes. While the relationship between species contained by these complexes is in part supported by their ability to physically attach to each other, the physiological consequences of these interactions and associations are less clear. In this study, we employed T. denticola as a model organism to analyze contact-dependent responses to interactions with species belonging to the same complex (P. gingivalis and T. forsythia), the closely associated orange complex (using F. nucleatum and P. intermedia as representatives) and the unconnected yellow complex (using Streptococcus sanguinis and S. gordonii as representatives). RNA was extracted from T. denticola alone as well as after pairwise co-incubation for 5 hrs with representatives of the different complexes, and the respective gene expression profiles were determined using microarrays. Numerous genes related to motility, metabolism, transport, outer membrane and hypothetical proteins were differentially regulated in T. denticola in the presence of the tested partner species. Further analysis revealed a significant overlap in the affected genes and we identified a general response to the presence of other species, those specific to two of the three complexes as well as individual complexes. Most interestingly, many predicted major antigens (e.g. flagella, Msp, CTLP) were suppressed in responses that included red complex species indicating that the presence of the most closely associated species induces immune-evasive strategies. In summary, the data presented here provide an in-depth understanding of the transcriptional responses triggered by contact-dependent interactions between microorganisms inhabiting the periodontal pocket.


Assuntos
Regulação Bacteriana da Expressão Gênica , Doenças Periodontais/microbiologia , Treponema denticola/genética , Treponema denticola/fisiologia , Fusobacterium nucleatum/fisiologia , Humanos , Porphyromonas gingivalis/fisiologia , Prevotella intermedia/fisiologia , Streptococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...